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A low-resolution (643) large-eddy model of forced homogeneous turbulence is nu- 
merically simulated using Kraichnan’s eddy viscosity. The introduction of a reliable 
statistical estimate of the ip exponents allows one to perform a detailed statistical 
analysis of the velocity field and shows that the probability distribution functions, the 
structure functions and the power-law exponents ip agree with previous numerical 
and experimental results obtained at much higher effective resolution. This result 
shows how a simple modelling of the energy transfer produces self-similar dynamics 
extending to the small scales and obtains the right statistical properties of the velocity 
field. 

1. Introduction 
Experimental measurements (Antonia et al. 1982; Anselmet et al. 1984; Meneveau 

& Sreenivasan 1987a; Castaigne et al. 1990; Meneveau & Sreenivasan 1991) and di- 
rect numerical simulations (Kerr 1985; Hosokawa & Yamamoto 1990; Vincent & 
Meneguzzi 1991 ; Kida & Ohkitani 1992) of three-dimensional turbulent flows have 
clearly shown how the self-similar energy cascade occurs through the repeated frag- 
mentation of the vorticity field and how this process generates elongated spatial 
structures (vorticity tubes) which form a fractal set where dissipation eventually 
takes place. This physical mechanism contrasts with Kolmogorov’s early theory 
(Kolmogorov 1941) of homogeneous turbulence (hereafter referred to as K41) where 
the self-similar energy cascade was considered as a continuous and not intermittent 
phenomenon, which originated uniformly distributed dissipative structures. 

In order to take into account the experimental evidence of a strong space-temporal 
intermittency of the turbulent field, different models of the energy cascade have been 
proposed as corrections to the basic K41 theory. Among these, the most popu- 
lar theories are: (i) the Kolmogorov-Obukhov log-normal theory (Obukhov 1962; 
Kolmogorov 1962; Monin & Yaglom 1975), which is an attempt to describe the 
spatial intermittency of the energy dissipation; (ii) Mandelbrot’s fractal model 
(Mandelbrot 1974), where the dissipative structures are supposed to belong to a 
fractal set; and (iii) the P-model (Frisch et al. 1978) where the intermittent energy 
cascade is described by a more phenomenological approach while retaining the basic 
standard fractal hypothesis about the dissipation field. 

All the theories of intermittency in turbulence are characterized by a parameter, the 
intermittency coefficient p, which appears in the expression for the high-order statistics 
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of the velocity differences, namely the velocity structure functions, (Ihu,(r)lP) = 
f lhux(r) lPP(8ux(r))  d6u,(r) (where P(hu,(r))  = P ( u X ( x  + v )  - u, (x) )  is the probability 
distribution function, hereafter referred to as PDF, of the velocity difference at scale 
r ) .  The basic hypothesis of all these theories is that the structure functions ((Gux(r)lP) 
scale as rlp where the cp  exponent is 

for the Kolmogorov-Obukhov log-normal model and is 

for the P-model. The intermittency coefficient p plays the role of a correction to the rp = p/3 law, given by the K41 theory. 
Even though all experimental results indicate the existence of a parameter like p 

(Anselmet et al. 1984; Kerr 1985; Meneveau & Sreenivasan 1987a, 1991), the above 
theoretical models of intermittency have shown different inconsistencies when 
checking the numerical values of the power-law exponents C p  against the statistical 
analyses of the experimental and numerical data about of the velocity field (Anselmet 
et al. 1984; Kerr 1985; Vincent & Meneguzzi 1991). Inconsistencies have also been 
observed when fitting experimental measurements of the fractal distribution of the 
dissipative field by using the method of the Legendre transform (Frisch & Parisi 1985) 
for the multifractal model of turbulence (Meneveau & Sreenivasan 1987a, 1991). 

Intermittency in turbulence can also be experimentally observed by directly de- 
termining the velocity PDFs which are generally characterized by a Gaussian shape 
at large scales (the energy-containing eddies) and become increasingly non-Gaussian 
at smaller scales. This last property is often interpreted as the effect of the self- 
stretching processes associated with the high-fluctuation vorticity structures (She 1991 ; 
She & Orzsag 1991). The fluctuations generated at small scales contribute to the ex- 
perimentally observed tails of the PDFs and are often analytically approximated by 
exponential laws (She 1991; Benzi et al. 1991). 

The statistical analysis of any turbulent flow is usually done by determining the 
high-order moments of the probability distribution functions. These are difficult 
to measure because of the poor statistics available near the extended tails of the 
probability distribution functions for any presently available set of experimental 
or numerical data. The fluctuations of the extended tails also cause large uncer- 
tainties when determining the rp exponents of the velocity structure functions for 
large values of p .  As a consequence, the measurement of the ip exponents is usu- 
ally done directly only for values of p below a given threshold pthres while for 
larger values of p some authors have based their estimates on the extrapolation 
of the estimated PDFs (Anselmet et al. 1984; Meneveau & Sreenivasan 1991). The 
value of pthres  that selects the present direct reliable estimates is highly debated 
and is not likely to be pthres 2 20, at least for almost all available experimen- 
tal (Anselmet et al. 1984; Meneveau & Sreenivasan 1991) and numerical (Kerr 1985; 
Vincent & Meneguzzi 1991; Metais & Lesieur 1992) data. 

The present work reports a study of the large-scale statistical properties of three- 
dimensional homogeneous turbulence obtained by processing the data of a low- 
resolution (643) simulation which uses the simple Kraichnan eddy-viscosity model 
(Kraichnan 1976; Chollet & Lesieur 1981) for the parameterization of the small 
scales. The numerical experiment reproduces a self-similar range for energy, sub- 
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stantially comparable, in extent, with that obtained from direct numerical simulations 
performed with higher resolution as in the numerical experiment performed by Vin- 
cent & Meneguzzi (1991) (2403 grid points) or by Kida & Ohkitani (1992) for highly 
symmetric flows. 

The aim of this work is to show how the right statistics of the large-scale structures 
of a turbulent field can be reproduced in a low-resolution model using an eddy- 
viscosity parameterization like that of Kraichnan. This also allows one to exploit best 
the available degrees of freedom without the need of keeping track of the many degrees 
of freedom connected to the molecular viscosity. In the case of isotropic and stably 
stratified turbulence, a similar approach has been followed by Metais & Lesieur 1992. 

This paper is composed of three sections. Section 1 describes the numerical method 
and the eddy-viscosity model. Section 2 discusses the statistical analysis of the velocity 
field on the basis of the PDFs. Section 3 compares our results on the values of the ip  
power-law exponents to the known theories of intermittency as well as to the recent 
numerical and experimental measurements. 

2. The numerical method and the eddy-viscosity model 
The numerical simulation is performed by using a pseudo-spectral code with fully 

periodic boundary conditions. The numerical scheme is based on the explicit treatment 
of the dissipative term and is 

(2.la) 

(2.lb) 

(2 .k )  

where uk  is the Fourier component of the velocity vector field and v(kjk,) is the 
eddy-viscosity coefficient. In (2.1) the subscript k labels the Fourier components 
for wavenumbers k G [-N/2,+N/2], with N = 64, and the superscript n refers to 
time t ,  = nAt. The vector o is the vorticity field and Hk is the nonlinear pseudo- 
spectral term : its computation requires nine three-dimensional FFTs to obtain the 
conservative formulation (Orszag 1971). Formula in (2.lb) removes the pressure and 
gives a divergence-free field. Forcing is obtained by keeping fixed the initial value 
of the Fourier components of the velocity field having wavenumbers modulus with 
k < ko, with ko = 1. 

A standard dealiasing technique (Orszag 1971) is used to remove the spurious 
components deriving from the pseudo-spectral computation of the nonlinear term. 
The technique exploits two shifted grids and spherical truncation for k/k, , ,  2 (S/9)'/2. 
The integration scheme is the standard leap-frog with a second-order Euler predictor- 
corrector restart for stabilization each 50 time steps. The time step is At = 0.01 and 
the integration is performed for lo4 time steps. 

Small scales are parameterized by the Kraichnan's eddy-viscosity model (Kraichnan 
1976; Chollet & Lesieur 1981) 

v(klk,) = (a1 + ~ ~ e - ~ ~ ~ ~ ~ J ~ ) v , ( k , ) ,  (2.2) 

where v,(kc) = (&-' = ( E ( k c ) / k c ) 1 / 2  is the viscosity based on the eddy turnover 
time z, = (E(kc)kf)-1/2 (Chollet & Lesieur 1981) corresponding to the numerical cut- 
off scale given by k,  = (8/9)'/2k,,,. The exponential term in (2.2) takes into account 
the contributions from the energy transfer around wavenumber k,. The constants 
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al and a2 used in this numerical experiment are a l  = 0.15 and a2 = 5 and are in 
agreement with the results of other numerical simulations (Lesieur & Rogallo 1989) 
while theoretical results, in the framework of the Test-Field-Model theory of tur- 
bulence, give al = 0.267 and a2 = 9 (Chollet & Lesieur 1981). An analogous func- 
tional form of v,(k,) is obtained in the more recent RNG theory of turbulence 
(Yakhot & Orszag 1986). 

The initial conditions of the numerical simulation are a random realization of the 
energy spectrum 

1.4 
K. 

1 + ( k / k ~ ) ~ / ~ + ~ '  
E(k) = 

with ko = 1. In particular, the Fourier velocity components are randomly generated 
from a three-dimensional symmetric Gaussian distribution having zero mean and 
variance in agreement with (2.3). The initial total energy is normalized to E(t  = 0) = 
0.5 and the characteristic velocity is v,,, = ( i E ( t  = 0))'I2 = 0.58. 

Supposing that the energy spectrum obeys over time Kolmogorov's law E(k) = 
CKe2/3k-5/3 (where CK = 1.4 is Kolmogorov's constant) within the range [ko-k,], then 
the total energy involved in the cascade process is 

(2.4) 
3 kP5l3dk = - C K E ~ / ~ ~ - ~ / ~  0 7  E, = lom E(k)dk = CKf213 l"m 2 

where the upper bound of the integral is assumed to be co for sufficiently large values 
of k,; the corresponding energy dissipation rate E is 

Using (2.5), the energy spectrum E(k) then becomes 

E(k) = ~ ~ , , , ~ k ~ / ~ k - ~ ~ ~  

Formula (2.6), calculated at k,, allows one to obtain the coefficient v,(k,) = ~ , , , ~ ( k ~ / k ~ ) ~ / ~  
as an explicit function of the r.m.s. velocity and the wavenumber cutoff k,. In practice, 
the eddy viscosity ve(k,) is computed each 50 time steps, when restarting the leap-frog 
scheme (Briscolini & Santangelo 1992). 

Some physical parameters of the simulation can be estimated by using formula 
(2.6) for the energy spectrum. They are the total enstrophy 

Q(t)  w lokc k2E(k)dk = :v12,rkbl3k:l3 X. 25, 

the efective Taylor dissipation length 

A(t) = [ E ( t ) / Q ( t ) ] ' / 2  21/2(kok2)-1/3 0.15, 

and the efective Taylor microscale Reynolds number 

(2.9) 1/2 -413 ReA = u,,J/v,ff ( ~ C K )  y (kc/ko)2/3 = 138, 

where 

(2.10) 

is the efectiue viscosity coefficient with y X. 0.2 (Yakhot & Orszag 1986). The efectiue 
attribute used in these formulae underlines the use of a large-eddy subgrid-scale 
dissipation model in place of an ordinary molecular viscosity, where terms like 
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FIGURE 1. The temporal evolution of total energy and total enstrophy. Note how forcing conserves 
remarkably the initial value of the energy, which shows only weak fluctuations (less than 1%). The 
enstrophy shows larger fluctuations, of the order of lo%, except during the initial transient phase. 
Note also how the value of the enstrophy 52 = 25 is in agreement with the value estimated in (2.7). 

viscosity or Taylor-microscale Reynolds number have a direct meaning. Comparing 
(2.10) with (2.2), the constant al = y4/3Ci1/2 = 0.1 has a value close to that used in 
our numerical experiment. Then, the most significant timescales are the macroscale 
eddy turnover time 

TO = (U,,,kg)-' e 1.7, 

z, = (urmSkc)-' e 0.06. 

(2.11) 

(2.12) 

and the eflectiue microscale eddy turnover time 

The formula for z, allows one to estimate the time step of the numerical integration 
which appears in good agreement with the value actually used, At = 

The temporal evolution of the total energy E( t )  and of the total enstrophy Q(t )  
are reported in figure 1. The behaviour of the energy shows weak fluctuations 
(less than l%), reflecting a balance between forcing at large scales and dissipation 
at small scales. Similarly, after an initial transient phase, the time evolution of the 
enstrophy shows only moderately larger fluctuations, at the level of 10%. The transient 
shows an initial decaying phase followed by a successive increase of the enstrophy 
due to nonlinear vortex-stretching mechanisms. Other authors (see e.g. Kerr 1985; 
Vincent & Meneguzzi 1991) find larger energy fluctuations with time because of the 
use of different forcing methods at low wavenumbers. 

Figure 2(a) shows the log-log plot of the energy spectrum at the end of the sim- 
ulation. No intermediate energy spectra are shown because, during the evolution, 
the spectrum is stationary and does not change significantly. A self-similar energy- 
scaling range extends over all available numerical scales from ko to kc. It may 
also be noted that there is no appreciable numerical noise at small scales, where 
the exponential cutoff efficiently dissipates the energy. It is remarkable that the 
self-similar range is as extended as in numerical experiments performed with much 
higher numerical resolution like those by Vincent & Meneguzzi (1991) or by Kida 
& Ohkitani (1992) which report similar values for the physical parameters like the 
efSectiue Taylor-microscale Reynolds number Re2 and the eflectiue viscosity coeffi- 
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FIGURE 2. ( u )  The final energy spectrum after 10' time steps. The dashed line represents the curve 
E ( k ) k 5 / ' .  The inertial range appears correctly reproduced for most numerical scales, from ko = 1, 
where forcing is applied, to the rightmost boundary k ,  , corresponding to the exponential cutoff 
of the eddy-viscosity model. ( h )  Linear plot of the compensated spectra ~ - ' " k ~ ' ' E ( k )  versus the 
wavenumber k for configurations 5, 10, IS ,  20, and 25 of our sample of 25 statistically independent 
configurations. The use of linear axes allows a rather accurate estimate of the behaviour of the 
dissipation F which does not deviate more than 20% from its mean value. Note how this result does 
not contradict the contents of (a )  where the log-log plot shows a large extent of the inertial range. 
This figure also allows one to estimate directly the value of the Kolmogorov's constant CK - 2. 

cient v e f f .  The similarity of the physical parameters and the analogous extent of the 
self-similar energy spectrum indicate that the simulations can be compared effica- 
ciously. 

A more detailed estimate of the reliability of the wide extent of the inertial range, 
shown figure 2(a), can only be obtained from a more quantitative analysis of the 
dependence of the dissipation versus the wavenumbers. To this end, we have reported 
in figure 2(b) the compensated spectra t .p2''k5/3E(k) versus the wavenumbers. The use 
of linear rather than logarithmic axes allows one to estimate how dissipation shows 
deviations of the order of 20% across the different scales and allows a comparison 
with other published results (see e.g. Metais & Lesieur 1992 and references therein). 
It is also important to stress that, while these fluctuations are clearly apparent when 
using the linear plot, there is little if any contradiction with our above statement 
about the extent of the inertial range which is naturally appreciated using the 
proper log-log plot of figure 2(a). Figure 2(b) can also be used to estimate directly 
the value of Kolmogorov's constant CK which we have found to be in reasonable 
agreement with the results found by other authors (see e.g. Monin & Yaglom 1975; 
Vincent & Meneguzzi 1991; Metais & Lesieur 1992). 

An example of the space configuration of the vorticity field is reported in figures 3 
and 4 by showing the vorticity structures that satisfy the criterion ((u' - (w2))/((04 - 

7 2 1'7 > 
(0-) ) -) , f r h ,  for f t h  = 2 and 4 respectively, where the () symbol is the simple 
space average. For large values of f t h ,  this criterion identifies the regions of the 
computational domain where vorticity fluctuations are significant and the related 
intermittent phenomena are expected to take place. Some structures appear strongly 
elongated and randomly oriented in space. Their characteristic length is of the 
order of a third of the entire computational domain, in rough agreement with 
the properties of the structures observed by Vincent & Meneguzzi (1991) in their 
figure 13. The effect of the lower numerical resolution clearly appears when comparing 
the two figures. At low resolution a smaller number of vorticity structures are 
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FIGURE 3. An example of the spatial configuration of the vorticity field. The figure shows the regions 
of space where (w2 - (w2))/((04 - ( o ~ ) ~ ) ' / ~ )  2 f t h  for f t h  = 2. The criterion selects the regions 
of space where vorticity fluctuations are particularly strong and indicates the corresponding space 
distribution of the intermittent dynamics. Some thin and elongated vorticity structures are easily 
observable and extend approximately for 20Ax. 

apparent but they are only moderately thicker than those observed with the high- 
resolution direct simulations. Notwithstanding these minor differences, the eddy- 
viscosity parameterization of turbulence appears to reproduce reasonably well the 
large-scale structures of the vorticity field within the dynamical scales that belong to 
the self-similar range. 
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3. Probability distribution function of the velocity field 
The statistical analysis of three-dimensional turbulence is performed by estimating 

the probability distributions and the correlation functions of the velocity field. A 
detailed and reliable statistical analysis obviously requires the treatment of a large 
number of successive and independent velocity configurations, and an accepted cri- 
terion that ensures the required statistical independence, is that the time interval 
between successive configurations be comparable with the macroscale eddy turnover 
time. For the present simulation, the value of TO x 1.7 (see (2.11)) suggests the 
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recording of a velocity configuration each 400 time steps, which corresponds to a 
couple of macroscale eddy turnover times. Since the simulation spans lo4 time steps, 
an ensemble of 25 statistically independent velocity configurations can be obtained 
for a total amount of 25 x 643 = 7 x lo6 samples. In the present study, the recording 
of many different configurations is also useful for balancing the use of low resolution. 

In order to define more accurately the actual number of independent space samples 
of a given configuration, the Taylor dissipation length A of (2.8) can be used instead 
of the mesh size Ax. In this simulation, which is based on the use of Kraichnan's 
eddy-viscosity model, this is not a major correction to the previous approximate 
estimate so that the total number of independent samples only reduces moderately 
to 25 x 643 x (J./Ax)-~ - 2 x lo6. 

An important statistical measure of intermittency is given by the structure functions 
Fp(r )  = (IGu,(r)lP) which are defined as the pth moments of the velocity differences 
Gu,(r) = u,(x + v )  - ux(x ) ,  which depend only on r for homogeneous isotropic 
turbulence. The evaluation of the velocity differences from the numerical data requires 
an average over all pairs of grid points which are separated by distance r .  This is a 
long numerical process that we have shortened by including in the average only those 
pairs of points which are aligned along the three orthogonal directions of space x, y 
and z .  This reduced procedure decreases the statistics but guarantees that both the 
longitudinal as well as the two transverse velocity components are included in the 
averaging process. 

Figure 5(a) shows the probability distribution function of the dimensionless variable 

5 ( r )  = dux(r)/(&(r)2)1'2 (3.1) 

for some values of r .  The corresponding histogram is obtained by grouping the 
available data in 64 bins of width A t  = 0.47, corresponding to a range of 15 standard 
deviations. The adopted binning parameters are a good compromise in order to 
measure reliably the extent and the shape of the tails of the distribution function. The 
data of the 25 statistically independent configurations are averaged to produce the two 
probability distribution functions shown in figure 5(a), where they are compared with 
the Gaussian distribution and with the data reported by Vincent & Meneguzzi 1991. 
It appears that the main features of the PDFs obtained from the high-resolution 
direct numerical simulation are reproduced. These features are: (i) the increase of 
the non-Gaussian nature of the PDFs with the decrease of the space scale r used 
to compute the distribution; and (ii) the development of clear exponential tails for 
small space scales. It is now possible to understand how some of the small-scale 
spatial patterns shown in figures 3 and 4, that correspond to large fluctuations of 
the vorticity, are the very probable cause of the extended non-Gaussian tails of the 
PDFs. 

It is not easy to find a simple analytical approximation to the velocity PDFs 
(like those shown in figure 5a) which is valid over the full range of definition 
of 4 .  Even though analytical approximations have been attempted by some au- 
thors (Castaigne et al. 1990; Kraichnan 1990; Meneveau & Sreenivasan 1991; She & 
Orzsag 1991; Benzi et al. 1991), we prefer to perform a piece-wise or local interpo- 
lation to the PDFs, of figure 5(a), by means of the simpler formula P ( < )  - e-Plt1', 
where a and p are parameters that depend on 4 ,  and the result is shown in figure 
5(b). Using the PDF at r = 9Ax, the asymptotic value of c( = 1.7 (dot-dashed line) is 
in agreement with the value of a estimated in figure 8 on the basis of the positions 
of the maxima of the PDFs of the moments. For smaller scales, the PDFs show an 
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increasing asymptotic exponential behaviour, as indicated by the limiting case of the 
PDF for r = Ax (long dashed line). 

Other authors (see e.g. Kida & Murakami 1989; Kraichnan 1990; Benzi et al. 1991) 
prefer different approximations to the PDFs based on the more complex formula 
P ( 5 )  - CYe-8151", which is expected to fit better the experimental and numerical data. 
We use two ways to estimate the value of y: the direct nonlinear fit of the PDFs 
and a reinterpretation of figure 8. The former has indicated non-negligible values of 
y - -0.5 only for the small-scale PDFs. The latter, based on the usage of the quantity 
log(p+y) instead of log(p) on the horizontal axis of figure 8 (Kida & Murakami 1989), 
indicates negligible value of y ,  which is not surprising, since the reported data derive 
from the PDFs which are characteristic of the inertial range. 

Besides this basic agreement regarding the non-Gaussian statistics, other parameters 
like the skewness S and the,flatness F of the PDFs of the velocity gradients give further 
confidence in the validity of the model. The PDFs for two variables dyux and d,u, 
give consistent values of theyutness F - 4.5 and are thus in agreement with other nu- 
merical experiments (Kerr 1985; Metais & Lesieur 1992); the distribution functions 
are also highly symmetric and the corresponding values of the skewness are small 
(S NN 0.06) and are comparable with those reported by Vincent & Meneguzzi 1991. 
The skewness of the longitudinal velocity gradient d,u, is S NN -0.35, a value which 
is clearly less than the value S = -0.5, asymptotically approximated in the case 
of homogeneous flows at ReA > 20 (see Kerr 1985) and theoretically predicted in 

-8-= I 
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FIGURE 6. ( a )  The log-log plot of the structure function F p ( r )  = (Isu(r)lP) versus r for p = 6 and 
16. The dots mark the values of r where data is available. The scaling range spans from 9 A r  
to 32Ax. The curves are fitted by means of the least-squares linear fit to get the iP slope. The 
intermittency coefficient is p = 2 - ib = 0.26. Moments computed at small scales are strongly 
affected by fluctuations which increase with the order of the moments. ( b )  The same as in ( a )  
but for p = 3,4,18, and 30. The error bars are the r.m.s. of the moments obtained from the 25 
statistically independent configurations. The corresponding errors for p = 3 and 4 are negligible 
and are not shown. 

Yakhot & Orszag 1986. This discrepancy can be interpreted as an effect of the low 
numerical resolution which affects the computation of S (see e.g. Antonia et al. 1982), 
where an analysis of the dependency of S on time sampling is reported) and reflects 
the existence of the exponential cutoff due to the eddy-viscosity approximation of the 
nonlinear transfer near the dissipation wavenumber k,. In fact, near k,, the kinetic 
energy of the flow is strongly damped, thus inhibiting the stretching of thin vortices 
that are instead dissipated rapidly when their thickness is of the order of a few grid 
points. 

An important measure of spatial intermittency is given by the intermittency 
coeficient p which is defined by the spatial correlation of the dissipation rate 
(C(X).(X + r ) )  - r - p .  A possible alternative way to measure the coefficient ,u is 
given by means of the sixth-order moments of the velocity PDFs. In fact, using 
the assumption that E - 6v3/r  (Monin & Yaglom 1975) one obtains ( E ( X ) C ( X  + r)) - 
( d v ( r ) 6 ) / r 2  - rC6-’ and p = (6 - 2. (See Anselmet et al. 1984 and, more recently, 
Sreenivasan & Kailasnath 1993 for a discussion on the dependence of the value of 
the p parameter on the different ways of processing of the experimental data.) Here 
we have decided to measure the intermittency coefficient p by means of the sixth-order 
structure functions and the plot of ( S v ( r ) 6 )  versus r is reported in a log-log form in 
figure 6(a) where the C6 exponent can be obtained from the slope of the curve that 
best fits the data. The right estimate of the slope of the curve depends on the fitting 
interval which should be confined to the inertial range of the energy cascade which 
is bound, at small scales, by the dissipative range. The extent of the latter depends 
on the dissipation model used and, in our simulation, which is based on Kraichnan’s 
eddy viscosity, dissipation appears to affect only a tiny range of small space scales. 
This is clearly seen from the energy spectrum (figure 2a) and from the sixth-order 
structure functions (figure 6a) which both exhibit a clean power-law shape on all 
available space scales, except the smallest ones. 

The least-squares fit applied to the whole scaling range, shown in figure 6(a )  for 
p = 6, after the removal of the first two smallest scales, gives an intermittency 
coefficient p = 0.35 which compares reasonably with previous estimates based on ex- 
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perimental and numerical data (Anselmet et al. 1984; Meneveau & Sreenivasan 1991; 
Vincent & Meneguzzi 1991). There is general agreement that the exact measurement 
of ,u is a difficult task and that the measurements obtained from the moment of order 
6 lead to an overestimate of its value (Antonia et al. 1982; Anselmet et at. 1984). 
Commonly ,u is considered closer to 0.20 as a consequence of its direct measure- 
ment which is based the scaling properties of the correlation function of the energy 
dissipation (Kolmogorov 1962; Kraichnan 1974; Anselmet et al. 1984). 

Figures 6(a) and 6(b) show how the structure functions corresponding to increasing 
values of the moments p exhibit a narrower extent of the scaling range. In order to fit 
the slopes of these higher-order structure functions we remark that figures 6(a) and 
6(b) suggest that the interval, bound at the left by r = 9Ax, identifies a reasonable 
self-similar scaling range. The re-estimate of the intermittency coefficient on the basis 
of this range of scales gives a somewhat different value of ,u = 0.26 which is in closer 
agreement with the recent measurements reported by Sreenivasan & Kailasnath 1993. 
Figure 6(b) shows the structure functions for other values of the moment, p = 3, 4, 
18 and 30, together with the errors of the mean values. The errors have been simply 
obtained from the r.m.s. of the sampled data and are negligible for p = 3 and 4. For 
large values of the moments the errors are not very large but help to give further 
confidence in the extent of the scaling range. 

4. High-order statistics 
The main difficulty of an accurate estimate of the high-order moments of any 

probability distribution function P(5) ,  obtained from experimental data, is due to 
the finite number of available samples of the random variable. In fact, high-order 
moments depend on the positions of the maxima of the functions tPP(5)  for large 
values of p .  For simple and bell-shaped functions, the maxima of <pP(c),  say La&), 
are located several standard deviations from the centre of the base distribution 
function P(<) ,  where the statistics is always poor, for any available number of 
sampled data. This effect is clearly observable in figure 7 where <PI'(<) is reported 
versus 5 for r = 9Ax and different values of p. The plot shows that, for p > 16, the 
positions of maxima cannot be distinguished or are subject to large uncertainties. 

On this basis, a simple argument can be used for estimating a priori the in- 
dex of the highest available moment obtainable from a limited amount of data. 
The argument is based on the assumption that a reasonable analytic approxima- 
tion of the probability distribution function is P ( < )  - e-birI" (Castaigne et al. 1990; 
Meneveau & Sreenivasan 1991; She 1991; Benzi et al. 1991) where the exponent a 
assumes values ranging from 2.0 (Gaussian distribution) to 1.0 (exponential distribu- 
tion). The position of the maximum of tPP(5)  is then 

A reasonable estimate of the position of the maximum in the histogram of t P P ( t )  
requires that at least Nb w lo2 samples be found in the bin corresponding to the 
maximum, so that the statistical uncertainty (Nc1/2 w 0.1) be at most 10%. This 
condition requires N t o t P ( t m X ( p ) ) A t  2 100 where A t  is the width of a bin of the 
histogram. Using (4.1) the previous constraint gives 
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FIGURE 7. Probability distribution functions of the moments of the normalized velocity difference 
( ( r )  = &(r)/(6u(r)z)1/z a t  scale r = 9Ax. The different curves correspond to the moments up  to 
order 18 and are shown scaled to the same maximum value. The vertical bar clearly identifies the 
maximum value of p for which the statistics is sufficient to allow a reliable measurement of the 
parameters of the PDF. It is apparent that the value of lp can be safely determined only for p < 16. 

Figure 8 shows the positions of the maxima of the histograms of ( P P ( ( )  versus p in a 
log-log plot for values of r near the lower bound of the scaling range (Y = 9Ax x. 0.9). 
The range of p is from 2 to 16 and the data are well fitted by a straight line 
log(tmax(p)) = 0.6 log@) + constant and the corresponding slope SI = 1/0.6 x 1.7, 
a value which is in agreement with the asymptotic local value of the a exponent 
shown in figure 5(b). For the present simulation, where 25 statistically independent 
configurations are available with a total number of lo7 samples, and A t  x 0.47, p 
must be less than 18, a value comparable with that obtained by a qualitative analysis 
of figure 7. For a single configuration only 107/25 samples are available and the 
corresponding maximum value of the 5, exponents that can be measured reliably is - 12. It is interesting to observe that, according to (4.2), and with the amount of data 
available to Vincent & Meneguzzi 1991 in their numerical experiment (of the order 
of lo9) they should have been able to measure the lp moments up to p = 26, which 
is in approximate agreement with their claim. 

A correct use of the (4.2) requires that the estimate of the total number of inde- 
pendent samples N,,, be based on the assumption of spatial and temporal statistical 
independence of the hydrodynamic signal. The above estimate of N,,, - lo7 is based 
on the grid size and is an overestimate because of the obvious dissipative correlations 
at small scales. A more reliable estimate can be based on the Taylor dissipation 
length A - 0.15 of (2.8). Using this latter, the above reliability estimates for the 
moments should be decreased by the quantity Ap = --a 10g,[(A/Ax)~] - 2.2, a result 
which makes our estimates in even greater agreement with the contents of figure 7. 
Correspondingly, when using molecular viscosity, where the dissipative range extends 
over a much broader range of wavenumbers, the above-mentioned Ap correction 
to the I& exponents might be substantially larger because the value of the Taylor 
dissipation length is much larger than the grid size Ax. 

Another correction to the estimate of the reliability of the moments comes from 
the assumption about the analytical expression of the probability distribution func- 
tion of P(<). If we use the function P ( t )  - tre-fll(1" (Kida & Murakami 1989; 
Kraichnan 1990; Benzi et a2. 1991; Metais & Lesieur 1992), the reliability estimates 
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FIGURE 8. The log-log plot of the positions of the maxima of the PDFs of the moments of the 
normalized velocity difference l ( r )  = hu(r) / (hu(r )*} ' /*  versus p ,  at scale Y = 9Ax = 0.9. The slope 
gives the value of CL = 1/0.6 = 1.7, in agreement with the results shown in figure 5(h). This is a 
measure of the exponent CI of the velocity PDF according to the formula P ( 5 )  - e-fl'tl'. 

of p are shifted by y, but only slightly, since our previous estimates of y are negligible 
in the inertial range. In any case, the other published results for y do not exceed 
unity and those do not alter significantly our conclusions. 

The rp exponents are numerically estimated on the basis that the pth-order structure 
functions (16ux(r)lP) versus r scale as power laws - rip. In a log-log plot, the lp  expo- 
nents can be estimated by using the weighted least-squares method (Press et al. 1989). 
All our fits have been applied to the scaling range (9Ax d r d 32Ax) identified in 
figures 6(a) and 6(b) where the structure function data show an approximate linear 
behaviour for values of p in the range p < 16. 

The availability of 25 statistically independent sets of structure functions, corre- 
sponding to the 25 field configurations, poses the problem of the right averaging 
process that best exploits the available data. We have found that there is no unique 
and optimal way to average the available data for a given pth-order structure func- 
tion. The simplest way is obviously the straightforward least-square fit applied to 
the mean pth-order structure function, as they are obtained by calculating the mean 
values, and the related r.m.s. deviations, from the raw data corresponding to the 25 
independent configurations. 

The final result is reported in figure 9 where the &, exponents are estimated with 
unweighted least-squares linear fits and are reported versus p .  The plot is divided in 
two parts: the left side corresponds to the iP exponents with order p less than or equal 
to 16, which can be measured more accurately (on the basis of (4.2) and of the results 
shown in figure 7), while the right part corresponds to the more uncertain moments 
of higher order where the statistics is poorer. Notwithstanding the reduced accuracy 
of the &, exponents for large values of p ,  figure 9(a) shows that our data are in good 
agreement with the results obtained in the high-resolution numerical experiment of 
Vincent & Meneguzzi (1991). Some minor deviations between our data and their 
results may depend on the different values of c2, which is here assumed to be 0.67, 
as in the K41 theory, while it is close to 0.69 in their paper. The same reasoning 
applies to the data of Anselmet et al. (1984) where 52 = 0.71. This argument has 
been validated by plotting the dimensionless structure functions 8, = ip - p/3i5 (not 
shown) and no major disagreement has been found. 
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FIGURE 9. The plot of the <, exponents of the structure functions versus p for the simulation of this 
paper (0  0 0 )  compared with data from the K41 theory (Kolmogorov 1941) (. . ,), the lognormal 
distribution (Monin & Yaglom 1975) (-..-), the B-model (Frisch et al. 1978) (- - -), the p-model 
with p = 0.7 (Meneveau & Sreenivasan 19876) (-.-), the data of the numerical experiment of 
Vincent & Meneguzzi (1991) (+++) and the experimental measurements of Anselmet et al. (1984) 
( x  x x). The vertical bar identifies the left part of the plot, where the statistics of the numerical 
simulation reported in this paper is sufficient to estimate reliably the cP exponents. In (b), the 
thin continuous line represents the log-stable distribution model (see Kida 1991) with parameters 
p = 0.2 and CI = 1.66. 

Besides the basic agreement among the different experimental and numerical results 
shown in figure 9 it is also necessary to indicate the reliability and the errors related to 
the estimates of the 5, exponents which, in turn, depend on the errors of the estimate 
of the slope of the pth-order structure functions versus r .  The first attempt to get an 
indication about these errors has been done using the weighted least-squares method 
where the weights are the standard deviations of the values of the pth-order structure 
functions for the different scales r. The results of the statistical analysis give almost 
negligible errors for the estimate of the [, exponents for p < 16, which increase only 
at the 10% level for p - 25-30. 

An unpleasant result is given by the values of the x 2  reliability test of the weighted 
least-squares linear fits which show unreasonably small values, even for small values 
of p, which is in clear disagreement with the evidence that the scaling range is clearly 
identified, at least for p < 10. We interpret this phenomenon as a consequence of 
an overestimate of the errors associated with the data points used for the fits. We 
have investigated directly this conjecture, by plotting versus r the pth-order structure 
functions for each temporal configuration, and we have observed that the data, corre- 
sponding to the different configurations, all show an approximately consistent linear 
behaviour but with large vertical shifts and only smaller fluctuations of the slope. 
This clearly indicates that the corresponding r.m.s. deviations of the mean values 
must be large as a consequence of the fact that an uncorrelated systematic compo- 
nent is probably contributing to the total r.m.s. deviations according to the formula 
oi(r)cotal = oi(r) + oi(r)systemacrc. The physical origin of this systematic component is 
not clear and is probably due to the influence and to the varying number of coherent 
structures of the flow that obviously changes in space and in time among configura- 
tions. In other words the probable physical origin of the systematic component is the 
temporal intermittency of flow which is hard to include in any analysis which is only 
based on spatial intermittency. We will return to this important argument in more 
detail when discussing figure 11. 
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Assuming that a systematic component is afflicting our statistical analysis we make 
an attempt to reduce its influence on the final result by ‘compressing’ the pth-order 
structure functions corresponding to the different configurations. Since there is no 
unique way to obtain this result we have decided to adopt the simple strategy of 
imposing that the structure functions, for a given p ,  all pass through a unique point at 
scale r = 15Ax. This procedure resulted in more reliable estimates of the parameters 
obtained from the weighted least-squares fits, as we have observed from the values 
of the x2 variable, that now do not show the uncomfortably small values obtained 
without this type of treatment of the data. 

Figures 10(a) and 10(b) show the behaviour of the lp  exponents versus p when 
using the unweighted and weighted least-squares linear fit methods respectively. The 
main conclusions that can be drawn from the figures are that: (i) the results are in 
agreement with those obtained in figure 9 inside the reliable range (thus confirming a 
reasonable agreement with other experimental and numerical data), (ii) they deviate 
significantly from the results of figure 9 only outside the reliable range (corresponding 
to an apparently less intermittent behaviour), and (iii) that the f l o  confidence bounds 
indicate a small (less than 30%) measurement error even for large values of p .  Points 
(ii) and (iii) are only apparently inconsistent because they pertain to the unreliable 
range that we have estimated on the basis of a clear and independent statistical 
argument such as that given by (4.2) and shown qualitatively in figure 7. Also, 
following the same line of reasoning, figure 7 shows how the apparent precision of 
the measurements of the <, exponents should not be a suprise, simply because these 
measurements reflect a precise determination of a wrong quantity. In fact, for large 
values of p ,  the maxima of the probability distribution of the moments are statistically 
bound by the constraint of (4.2), which is located well before the maxima could be 
achieved with a limited amount of data. In other words, for large values of p ,  the 
measurement of the l p  exponents simply determine ‘precisely’ the bound indicated by 
(4.2) which has no physical meaning but rather reflects how our statistics is not able 
to determine the cp exponents for large values of p .  

We have investigated in more detail the origin of the large systematic fluctuations 
of the values of the structure functions that we have discussed above and we have 
concluded that these are strongly connected to the temporal intermittency of the 
system. To this end, we have plotted in detail the &, exponents versus p for each 
configuration and we have reported the results in figure 11. The inspection of 
the results shows that the single curves are not affected by any noise, which can 
be due to the poorer available statistics, but rather, even inside the reliable range, 
the curves can be naturally grouped into at least two classes: (i) in figure ll(a), 
the set of configurations that show a behaviour similar to the mean results shown 
in figures 9 and 10, and (ii) in figure ll(b), a smaller set of configurations that 
show a much stronger intermittency with curves that exhibit a behaviour which 
loosely resembles the Kolmogorov-Obukhov log-normal model (Kolmogorov 1962 ; 
Obukhov 1962; Monin & Yaglom 1975). Also, among the evolved configurations, 
there is at least one which shows a clean classical, non-intermittent, K41 behaviour. 
While we strongly believe that these results on temporal intermittency are worth a 
further and deeper investigation we also stress how they clearly indicate that the time 
component of intermittency is a phenomenon which is often neglected and should be 
taken into account more seriously (see Kida & Ohkitani 1992 for a discussion about 
temporal intermittency from the analysis of energy spectra) when trying to draw 
conclusions about synthetic quantities like the probability distribution functions of 
three-dimensional turbulence. 
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FIGURE 10. The same as in figure 9 but with the lP exponents obtained by applying the unweighted 
(a) and the weighted (b) least-squares linear fit method, for the pth-order structure functions versus 
r, after the removal of the systematic fluctuating component due to the temporal intermittency of 
the system. Our numerical results are shown using a thick continuous line and errors are indicated 
by the +lo confidence bounds (thin continuous lines). The K41 theory (Kolmogorov 1941) (. . .), 
and the log-normal distribution (Monin & Yaglom 1975) (-..-) lines are shown for comparison. 
Note how the results are in agreement with those of figure 9 only inside the reliable range while 
they deviate appreciably outside, indicating an apparently smaller intermittency. The small errors of 
the estimate of the ip exponents, inside the non-reliable range, is the result of the statistical analysis 
and has no physical meaning; in fact, this fictitious precision can be explained in terms of the the 
sampling cutoff shown in figure 7 and defined by formula (4.2) (see the text for a more detailed 
discussion). 
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FIGURE 11. The same as in figure 10 but here the lp  exponents versus p are reported in detail for 
each of the 25 statistically independent configurations. The curves that best reproduce the mean 
behaviour are shown in (a) while (b)  indicates the curves (corresponding to configurations 2, 7, 9, 12, 
14 and 24), that loosely resemble the Kolmogorov-Obukhov log-normal model. Among the evolved 
states, in (b), configuration 6 shows a clean K41 behaviour. Note how the temporal intermittency 
does not allow one to identify a simple ‘mean curve’ but rather the curves can be grouped at  least 
into two sets. Note also how the reduced number of available data per configuration (of the order 
of 3 x los) shrinks the reliable range to p < 12 and still allows one to classify the configurations. 

5.  Conclusions 
This paper reports the statistical analysis of the velocity field of a low-resolution 

( 643) numerical simulation of fully developed homogeneous turbulence where the 
small scales are parametrized using the simple Kraichnan eddy-viscosity model. The 
results have indicated how (i) a clear k-5/3  self-similar energy spectrum extends over a 
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wide extent of the resolved scales and is conserved during the entire simulation, (ii) the 
tails of PDFs of the velocity structure functions tend to an exponential behaviour for 
small scales and, (iii) the (,, power-law exponents of the velocity structure functions 
are in agreement with previous experimental and numerical data for p ,< 16. The third 
result is supported by the introduction of a reliable statistical criterion that allows 
one to select accurately which PDFs of the momenta of the structure functions, and 
which cp exponents, can be measured reliably from the available data. 

The use of this statistical criterion suggests that the spatial intermittency of the 
single configurations can be analysed in detail, without the need of time averaging 
in order to improve the statistics. We have applied this procedure to our numerical 
experiment and we have found some clues to the nature of its temporal intermittency. 
In particular, we have observed that, while most of the time the system shows a 
mean behaviour, there is a non-negligible set of configurations that exhibit a stronger 
spatial intermittency. 

All these results confirm the validity of the large-eddy simulation method, even 
with a limited numerical resolution, as a tool to reproduce both the phenomenology 
and the main statistical properties of homogeneous turbulence. 

The agreement of the results obtained using a low-resolution simulation with 
Kraichnan’s eddy-viscosity model with those obtained from high-resolution direct 
simulations of turbulence (Vincent & Meneguzzi 1991), or from experimental data 
(Antonia et al. 1982), suggests that the statistics of homogeneous turbulence is essen- 
tially independent of the dissipative model used. 

The authors wish to thank R. Benzi and G.F. Carnevale for useful comments and 
suggestions. 
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